Strong Convergence of Iterative Schemes for Zeros of Accretive Operators in Reflexive Banach Spaces
نویسنده
چکیده
We introduce composite iterative schemes by the viscosity iteration method for finding a zero of an accretive operator in reflexive Banach spaces. Then, under certain differen control conditions, we establish strong convergence theorems on the composite iterative schemes. The main theorems improve and develop the recent corresponding results of Aoyama et al. 2007 , Chen and Zhu 2006, 2008 , Jung 2010 , Kim and Xu 2005 , Qin and Su 2007 and Xu 2006 aswell as Benavides et al. 2003 , Kamimura and Takahashi 2000 , Maingé 2006 , and Nakajo 2006 .
منابع مشابه
Some iterative method for finding a common zero of a finite family of accretive operators in Banach spaces
The purpose of this paper is to introduce a new mapping for a finite family of accretive operators and introduce an iterative algorithm for finding a common zero of a finite family of accretive operators in a real reflexive strictly convex Banach space which has a uniformly G^ateaux differentiable norm and admits the duality mapping $j_{varphi}$, where $varphi$ is a gauge function ...
متن کاملConvergence theorems of iterative approximation for finding zeros of accretive operator and fixed points problems
In this paper we propose and studied a new composite iterative scheme with certain control con-ditions for viscosity approximation for a zero of accretive operator and xed points problems in areflexive Banach space with weakly continuous duality mapping. Strong convergence of the sequencefxng dened by the new introduced iterative sequence is proved. The main results improve andcomplement the co...
متن کاملStrong convergence theorem for finite family of m-accretive operators in Banach spaces
The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.
متن کاملCONVERGENCE THEOREMS OF ZEROS OF A FINITE FAMILY OF m-ACCRETIVE OPERATORS IN BANACH SPACES
In this paper, we continue to study convergence problems for a Ishikawa-like iterative process for a finite family of m-accretive mappings. Strong convergence theorems are established in uniformly smooth Banach spaces.
متن کاملIterative Approximation of a Common Zero of a Countably Infinite Family of m-Accretive Operators in Banach Spaces
Let E be a real reflexive and strictly convex Banach space which has a uniformly Gâteaux differentiable norm and let C be a closed convex nonempty subset of E. Strong convergence theorems for approximation of a common zero of a countably infinite family of m-accretive mappings from C to E are proved. Consequently, we obtained strong convergence theorems for a countably infinite family of pseudo...
متن کامل